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1. INTRODUCTION

This is the second part of a series of papers on general function spaces.
The first part [11] contains a description of abstract decomposition methods.
This part deals with the basic spaces from which the more general spaces,
considered in later papers, are built up: weighted L -spaces of analytic
functions, 0 < p < oo. This part is self-contained.

The aim of this paper is the proof of inequalities of Plancherel-Polya—
Nikol’skij type and the consideration of related quasi-Banach spaces. Let
p(x) be a weight function, and let w, and u, be two Borel measures in R,
with some additional properties explained later on. Then we shall be
concerned with inequalities of type

(I) H PfHLq,ul < CH prLp,ug 3 o8] > q > p > Os
and of type
D D Ny, < ¢l pfllyny» 0 =g =p>0.

Here f belongs to a set of entire analytic functions in R, where the supports
of the corresponding Fourier transforms are contained in a fixed compact set
in R, . L, , means the usual quasi-Banach space in R, with respect to the
measure u. For p(x) =1, dy; = du, = dx = Lebesgue measure and
1 <p<gq< o, one obtains the classical inequalities of Plancherei-
Polya-Nikol’skij type, which play a fundamental role in the theory of function
spaces, namely in the approach given by Nikol’skij [6] (approximation of
functions by entire analytic functions of exponential type). The corre-
sponding L -spaces treated in this paper are

{f1fe(Sa), supp Ff C 2, || f |z, < o0},
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GENERAL FUNCTION SPACES 155

0 < p < oo. Here (S,)' is a space of distributions (lying between §’ and D),
Ff is the Fourier transform of f, and  is a fixed bounded domain, « is a
weight function, and p a measure.

We extend the classical inequalities in two directions: first to 0 < p < 1,
and second to weight functions p(x) and measures u. For the first extension
we need inequalities of maximal type (Hardy’s maximal function), for the
second one ultra-distributions. In the Appendix (Section 5) some facts on
ultra-distributions needed are described; in particular a proof of a theorem
of Paley-Wiener-Schwartz type (Theorem 5.5) is given which is perhaps of
interest in itself. Apart from this theorem the main results of the paper are
contained in Theorem 3.5 (resp. 3.6) and Theorem 4.1.

All unimportant positive numbers in this paper are denoted by the same
letters ¢, ¢/,... .

2. DEFINITIONS

In this section we give the definitions for the weight function p(x), the
measures, and the L,-spaces mentioned in the Introduction. We shall use
the notations introduced in the Appendix (Section 5) of this paper.

2.1. Weight Functions

R,, denotes the n-dimensional real Euclidean space.

Dermvaition 2.1, Let 1 <a < oo, and let {CJj., be a set of positive
numbers. Then K(a, C.) denotes the set of all Borel-measurable functions
p(x) in R, such that

0 <plx) < Cp(y)expelx —y|H* < o (H
foralle >0,xeR,,and ye R,.
Remarks. (1) Setting y == 0 in (1), it follows by Lemma 5.1 that
plx) € (Sq)'. @
Equation (1) may be simplified. Let

0 <p(x) <cp(yyexpc' lx —y 5 c>0,¢>00<B<l.
(3

If the Borel-measurable function p(x) satisfies (3), then it also satisfies (1},
provided B < lja < 1. On the other hand, choosing ¢ = 1 in (1), one
obtains (3) with B = 1/e. But the advantage of the more complicated
condition (1) is the relation (2) which will be useful later on.
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(2) For all € > 0 it follows immediately from (1) that
coexp(—e | x M%) < p(x) < ¢ expel|x[Ve c. >0, ¢/ >0.
©)

Consequently, the growth of p(x) is restricted from above and from below.
Furthermore, as an easy consequence of (1) one obtains the following
assertion: Let A > 0, p; € K(a, C.), p, € K(a, C."). Then

Ap, € K(a, C), pi* € K(a, CL)),
p1 + p2 € K(a, max(C. , C.")), %)
p, € K(a, C)),
pipz € K(a, CisClrn),  pa/pa € K(a, CeroClyo)-
ExampLe. If « > 0 and j = 1,..., n, then
I +1x;]*eK(a, C) ©

for all 1 < a < o and appropriate C,, depending on a. If 0 << B < 1,
then

¢ e K(a, C,) Q)
for B < 1/a < 1 and appropriate C, . Using (5) oné can construct a large

variety of functions p of type (1), for instance frational functions of (6) and (7)
with positive coefficients.

2.2. Measures

Let 2 > 0, and let
Qkh = {x | X = (xl seees x’n)a hkﬂ < X < h(kJ + 1)1 (] = 15'"3 n)} (8)

be a decomposition of R, where k = (k; ...., k), k; being integers.

DrrFINITION 2.2. M denotes the set of all Borel measures in R,, such that

W@ =1  forall O ©)

Remark. The last definition shows that we shall be concerned with
measures having a lattice structure. The following two measures are of special
interest: (i) the modified Lebesgue measure dx/A", and (ii) atomic measures
w(@:" = p({x*}) = 1, where x* is a fixed point in Q,* The inequalities
proved later on are independent of e M, , provided that 4 is sufficient
small.
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2.3. Admissible Weight Functions and L -Spaces

If 1 is a Borel measure in R, , then || - || L, has the usual meaning, namely

1/p
ey = ([ 17 ds) " for 0<p < oo,
= p — ess sup | f(x)| for p = oo, (10)

f(x) are complex-valued functoins. F denotes the Fourier transform
{Appendix 5.4).

Dermition 2.3, Let pe K(a, C), and let pe M, .

(a) A Borel-measurable function «(x) is said to be admissible (with
respect to p and p) if

(1) there exists a positive number ¢ such that 0 < w(x) < cp(x)
forallxeR,,

(ii) there exist a positive number 8, a positive number ¢', and a
Borel-measurable subset G of R, such that w(G N @) = & for all @,* and

k(x) = 'p(x) for xed, (1)

(b) Let «x(x) be an admissible function (with respect to p and u), let
0 < p < o0, and let 2 be a bounded subset of R, . Then

L%, p) = {f 1 S (So), supp Bf C 2, || f |1, ,, << o0}, (12)

Remark. Later it will be shown that all the spaces L,%(«, u) are quasi-
Banach spaces, provided that 4 is sufficiently small.

ExampLE. The most interesting feature of the last definition is the
possibility to replace p € K(a, C)) by «. Let du = dx/h* be the modified
Lebesgue measure. Using the examples in Section 2.1 it follows that

n
K(X) = H | x; ;\Bjs B] =0
=1

and
kx)=1xF B=0
are admissible functions (where p(x) = [Ty (I + | x;)® and p(x) =

I 4| x |5, respectively). Of particular interest seems to be the case x(x) =
| X, |5 B = 0.
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3. INEQUALITIES

In this section inequalities of types (I) and (II) mentioned in the Intro-
duction are proved. It will be convenient to divide the proof of the general
inequalities into two main steps: First, the inequalities are proved for
Lebesgue measures. Here the lattice structure of the measures does not play
any role (see Section 3.1, 3.3). Second, an equivalence theorem will be derived
showing that one may replace the Lebesgue measure by an arbitrary measure
p € M, (see Section 3.4). Afterward it is not hard to formulate the general
results (see Sections 3.5 and 3.6). The question whether the assumptions made
are natural ones is discussed in Section 3.7.

3.1. Inequalities of Type (1) for the Lebesgue Measure

To avoid technical difficulties we first prove the inequalities for rapidly
decreasing analytic functions. We use the notations and the results of the
appendix. Let || - IILp =" ||LM if dp = dx is the Lebesgue measure.

THEOREM 3.1. LetpeK(a,C), b > 0,and 0 < p < q < c0. Then there
exists a positive number C such that for all entire analytic functions f,

feS., suppEfC{y|ly|<b} (13)

one has
I pflie, < Cllpflls, - (149

Proof. Step 1. It follows from (64) and (4) that both sides of (14) are
finite. Let ¢ &S, such that Fif has compact support and (Fiy)(x) = 1 for
| x | < b. The existence of such a function follows from (56) and the remarks
in Section 5.3. If f'satisfies (13) it follows that Ff = Ff - Fi, and consequently

f@) = [ FO)x— )y (15)
Therefore, by (1),

PO 1S < e [ 1Tl — 9] ply) exp(e | x — y ') dy. (16)

If 1 <p < oo, then again using (64) and choosing e sufficiently small,
it follows by Holder’s inequality that

leflle, < cllpflle, - a7
If0 < p < 1, (15) yields

p() [ f)] < ¢'(sup p(p) | F (D)2 fR P L f(DI® dy.
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Taking the supremum on the left-hand side and using || of iz, < oo, one
obtains (17y for 0 < p < 1.
Step 2. Let0 < p << g <C 0. Then (14) is a consequence of (17) and

Feflle, < U pf 2™ of P2

Remark. The case p(x) = 1 reproduces the classical Plancherel-Polya-
Nikol’skij inequalities.

3.2. Inegualities of Maximal Type

For the proof of inequalities of type (II) mentioned in the Introduction,
some preliminaries are needed. Our approach is based upon the technique of
maximal inequalities developed by Fefferman and Stein [1] and Peetre [71.
In particular, some ideas of the proof of the lemma below are taken from
Peetre [7]. As usual, (Mf)(x) denotes Hardy’s maximal function,

(MAYE) = sup (1 B) [ 172 b,
B
where the supremum is taken over all balls B centered at xe R, .

LemMma 3.2. LetpeK(a, C.), b > 0,and 0 < r < 0. Then there exists a
positive number C such that for all functions of type (13)

sup p(x — 2) 22 < M | pf P (18)

Proof. 1If 4 is as in the proof of Theorem 3.1, then 94/éx, belongs to also
S, and its Fourier transform has a compact support. Hence by (15), (64), and
the counterpart to (16),

T x—|<el s IfDexp(-Alx 2y d,
1 R,

plx — 2)

0
where A is an appropriate positive number. Using the estimate
(I+Ix—y"MiA+1z1") <l +1x—y -z,

it follows that

X exp(—A i x — z — y 1 dy

i flx — w)
A4 [ nir

(19
< ¢"sup p(x — w)
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A’ being a positive number with A’ < A. Now we use the fact that

sup [ Ve@) + (| 1g@l o) (20)

fol<1 Jol<1

is an equivalent quasi-norm in the Banach space C'({v || v | < 1}) (a proof
of this assertion will be given in the remark below). Let B, be a ball of radius 3.
By a homogeneity argument it follows for g € C(B;) that for.v € B;

i/r
80) < cdsup [ Vg0l + 8 ([ Tgalrdw) L @D
Bs
where ¢ is independent of 5. Now we apply (21) to f(x — w). If one assumes
8 < 1and takes into consideration that
ap(u) < p() < o), |u—v] <1, 22

where ¢; and ¢, are two positive numbers independent of ue R, and ve R,,,
then it follows that

plx —w | flx —w)| <8 sup plx —w =) [ Vf(x —w—y)

4 cbmiT (f

|yl

i/r

prix—w—p | flx—w— y)lrdy)

(23)
The integral is estimated from above by

(fwwm prle — ) | flx — )l d“)w < el + [ wmMIM | pf 1N

Putting this estimate in (23), dividing both sides by 1 - | w [*/" and taking
the supremum with respect to w € R, , it follows that

Sgp po(x — W) lf_{(_x| IWn)/L < ed sgp plx — W)H—JCW
+ oM (M | of "GN, 24

where ¢ is independent of 8. Obviously, one may replace df/9x, in (19) by V7.
Choosing 8 in (24) sufficiently small, then (18) is a consequence of (24) and
(19), where 9f]ox, is replaced by Vf.

Remark. We used the fact that (20).is an equivalent quasi-norm in the
Banach space C! of all continuously differentiable functions in the closed
unit ball B. We give a proof. Obviously, (20) can be estimated from above by
Il g lcxm - The converse inequality is a consequence of

fg@)] < e( mm | g0 + sup | Vg(w)))
i< @25)

<ec [(Lw]<1 | gl dw) + !21231 | Vg(w)l]

which follows from the mean value theorem.
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3.3. Inequalities of Type (11) for the Lebesgue Measure

I o = (g ,..., ¢,) IS @ multi-index, «; being nonnegative integers, then
ar A . - . \ n
Do o= ¢'™'oxf -+ 0x% has the usual meaning with | o | =3, ; ;.

THEOREM 3.3. Lef pcK(a,C), b >0, 0 <p << g < <0, and let o =
(0t s...n 0ty) be a multi-index. Then there exists a positive number C such that
for all functions f as given via (13) there holds

| pDf 1, < Cllpfllz, - (26)

Proof. The case p = g = o follows after differentiation of (15) with
respect to x in the same way as in the proof to Theorem 3.1. Let 0 < p =
g << co. Choosing 0 < r << p, then (18) yields

| p(effoxlz, < el(M | pf IR/ g, = el M| of i"E) .

By Hardy’s maximal inequality (see [10, p. 5]) it follows that

| p@fioxplic, < cll| pf "Iz, = cil pf iz, - (27

o/r

If f satisfies (13), then ¢ffox, does, too. Consequently, by iteration of the last
estimate, where x; can be replaced by x; , (26) follows with 0 < p = g < 0.
Since D*f satisfies (13), too, the general case 0 < p <{ g << w0 is a conse-
quence of Theorem 3.1.

Remark. If p(x)=1 and 1 <p < g < oo, then (26) is used by
Nikol’skij [6] in connection with the theory of function spaces.

3.4. An Equivalence Theorem

THEOREM 34. Let peK(a,C), b >0, 0 <p << oo, and py, pye M.
If ©y(x) is an admissible function with respect to p and py , and if «,(x} is an
admissible function with respect to p and p., (see Definition 2.3(2)), then there
exists a positive number C such that for all functions f of type (13)

| 61/ ey, < Cliwofli,, - (28)
provided that I is sufficiently small (that means 0 << h < hy , where hy depends
only on 1, p, a, b, and C, , but not on p , s , (%) and ry(x)).

Proof. Step 1. First we prove inequalities of type (28) for the modified
Lebesgue measure and the atomic measures described in the Remark in
Section 2.2. More precisely, there exist two positive numbers ¢, and ¢, such
that for all functions f satisfying (13), there holds

el p(xF) FOON, << pf lle, A7 << cp ] p(x®) f M, - (29)
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Here x* € Q)" are arbitrary points, and
1/p
lal,=( ¥ lal?)", 0<p<ow,

with the usual modification for p = co. The constants ¢, and ¢, are inde-
pendent of 4 and of the choice of x* € Q2. If x € Q" then

| fGl < TfGP)] A+ ch Squh\ Vi@l (30)
260y
Restricting /2 by # < 1 and using an inequality of type (22), it follows that

p() 1 f) < ep®) [ f(xM)] + ch sup  p(z) | Vf(2).

x--zI<e

Here ¢ and ¢’ are independent of A. If p < oo, then
[ 7@ 1 G dx < chn Y p7() | f(elP
n k

+ehr [ I sup p@ | VFEDWP dx (1)

,
n T—21RC

where ¢ and ¢ are independent of 4. Let 0 < r < p. Using (18) it follows
that the second term on the right-hand side can be estimated by

ch? fR | M | of I (0)]?/" dx. (32)

Again using Hardy’s maximal inequality, the last term can be estimated
from above by ch? | pf ]|};. If & is sufficiently small, A < A, << 1, then
one obtains the right-hand side of (29). A small modification shows that the
assertion is also true for p = oo (instead of (18) one has to use (26) for
p = g = oo and &/2x;). The left hand side of (29) is proved in the same way
by changing the roles of x and x* in (30).

Step 2. Let 0 < h < hy and u,, o€ M; . To prove (28) for x; =
Ky = p, let f be a function satisfying (13). Since ¢; and ¢, in (29) are inde-
pendent of the choice of x* € 0,7, it follows for p << oo that

[, PP 1707 i < 2 S sup @) | F@)7

<chm ). iféfhp”(Z) | f(2)® (33)

<[ o) 17 dis

A corresponding estimate holds for p = oo.
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Step 3. Let peM,, where h < hy, and let «{x) be an admissible
function with respect to p and u. We shall show

loflle,, < cl«fic, (34)

If G has the meaning of Definition 2.3(a) (with respect to p), then we
construct a new measure v € M; by

W) =2 (W20 G QNG N M), (35)

where £2 is an arbitrary Borel-measurable set in R,, . If § has the meaning of
Definition 2.3(a) (with respect to w), then it follows from (33) (with g, = p
and u, = v) that for p < ©

| P @ de <o [ pr0) xe"@) [FPdn (36)

where yq(x) is the characteristic function of G. Equation (34) follows from
(36) and the fact that p(x) xo(x) < cx(x). A corresponding assertion holds
for p = co. Now, (28) is an easy consequence of (33) and (34).

Remark. Equation (28) and its special case (29) show that the inequalities
proved here have a lattice structure. The question arises how to understand
the restriction 4 <C A, of the lattice constant. In Section 3.7, it will be proved
that (29) cannot be true if /4 is too large.

3.5. The Main Inequality

THEOREM 3.5. Let peK(a, C), b >0, 0 <p << g < oo, and let p,,
po € My where O << h <C hy (here hy has the same meaning as in Theorem 3.4).
Furthermore, let «,(x) be an admissible function with respect to p and u;,
J = 1,2 (cf. Definition 2.3(a)). If « is a multi-index, then there exists a positive
number C such that for all functions f of type (13)

| @D s, . < Clikaflc, ... 27

Proof. If f satisfies (13), then D°f has the same properties. But now (37)
is a consequence of (26) and (28).

ExampLE. By (37) it is possible to compare the Lebesgue-measure with
the atomic measures as described in the Remark in Section 2.2. Other
interesting examples may be obtained on the basis of the examples in
Section 2.3. One has

l

L,

< <C

H | x; % Df
=1

U(1+Ixf!)B’D“f

n
H ‘ XJ |6Jf” >
Ly J=1 Ly

640/19/2-5
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where 0 < p < ¢ < o0 and B; > 0; and
I x? Dflle, <L +1x ) Doflly, < Clllx P fllz, »

where 0 <p <\ ¢ < o0 and 8 = 0. Here || “|lz, are the usual spaces with
respect to the Lebesgue measure.

3.6. Extension of Inequality (37)

For the later applications we extend (37).

THEOREM 3.6. If p, p, q, t1 5 Mo s Ky, Ko, and o have the same meaning
as in Theorem 3.5, and if Q2 is a bounded subset of R, , then there exists a
positive number C such that (37) holds for all fe L,“(xs, py) provided that
the lattice constant h is sufficiently small (that means h < hy where hy depends
on £2).

Proof. Letfe L (xy, py). By Lemma 5.4 and Section 5.6 it follows that f
can be approximated in (S,)’ by f; €S, such that supp F5;C{y||y| < b},
where b is sufficiently large. Apply (37) to f5. If o = (0,..., 0), then one
obtains the desired inequality for 8 | O (here one uses the explicit form of f; as
described in (60), after appropriate changes of notations). The general case
follows by mathematical induction with respect to | « |.

Remark. We extend another inequality which will be useful for later
applications. For all functions f; satisfying (13), it follows by (18), (24), and
Hardy’s maximal inequality that

Lf(x — 2)]

” S‘:P plx — Z)m |

.,

where 0 < r < p < . Using the above approximation argument (and
Fatou’s lemma), it follows that the last inequality holds true for f'e L,(p, u.),
pr indicating the Lebesgue measure.

3.7. Noninequalities

The above inequalities have two characteristic features: (i) the lattice
structure, which means the arbitrariness of the measures p€ M; in the
inequalities (28) and (37), and (ii) the growth conditions for p € K(a, C.),
expressed by (4). In part (a) of the theorem below and in the remark below
we clarify the lattice structure. Parts (b) and (¢) of the theorem below show
that one cannot weaken essentially the growth condition (4) in the theory
developed above.
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Turorem 3.7. (a) Let peK(a,C.), b >0, and 0 <p < oo, If h >
«wnt/2|b, then there does not exist a positive number C such that for all choices
x* e Q" and all f, satisfying (13), one has

Il ofllc, < Cll p(=*) F(xF), - (38}
() Iffe(Sy) such that supp Ff is compact and
e @iz, <

Jor an appropriate positive number e, then f(x) = 0.

{¢) Lete>0,0<<p << o0,and0 < g << 1. Then there does not exist
a positive number C such that for all feS (Schwartz space} with supp Ff C
{y11y] < € one has

lemel™ Aff, < Clle =], (39)

Proof. (a) Let0 << b’ < b[n*/? such that x > «/b’, and use the known
formula

F( T1Gin sxym) = e 0

where x' is the characteristic function of @' = {£ | € = (&,,..., &n), | &1 << B,
Ifpes§,, then

J(x) = o(x) ﬁ ((sin b'x;)/x N e S, .
7=1 \

The remarks in Section 5.3 show that ¢ can be chosen such that ¢(x) == 0 and
supp Ff C{n | [ ] < 3} (413
If § > 0 is sufficiently smali, then it follows that

SmmETzmmp¢b*FII§%?ﬁ)CQ’+{yMy!<5HHyHy%<bk

7=1 7

Consequently, f satisfies (13). Since % > =/b’, one may choose for x* e 0"
a subset of the roots (#/b){ ..., I,) . of f, where ; = +1, =2, L3,....
Hence, for such a choice of x* the right-hand side of (38) vanishes. This
proves (a).

{b) If f has the described properties, then

ENQ) = ¢ [ e f(x) dx

Ry
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can be extended to complex , for instance to real, {; ,..., {,_; and complex {,
with | Im {,, | < e. Hence, Ffis an analytic function in the strip | Im {, | < e.
Since Ff has compact support in R, , it follows that Ff = 0, and thus f = 0.

(c) Assume that there exists a constant C such that (39) is true for all
feS with supp FfC{y|ly| <. Let feS', supp F/C{y|Iy| < e2
Using the approximation argument of Lemma 5.4 with respect to S and S’
it follows that (39) holds also for f (with the same constant C). In particular,
(39) is true for arbitrary polynomials. Let f(x) = 3., x;® where m is a
positive even number. Let r = | x |. If p < oo, it follows that

o0 [va)
Inzpf exp(_.prl/a) r@m—2p+n—1 dr < CJ' exp(_,_prl/a) rpm—\-n—l dr’
0 0

where ¢ is independent of m. Using the transformation prl/e = ¢, it follows
that
m**I'apm — 2ap + an) < 'I'(apm -+ an), (42)

where I'is Euler’s I-function. Here ¢’ is independent of m. As a consequence
of Stirling’s formula one obtains

Tapm + an) < em?**I'(apm — 2ap + an).
Because ¢ < 1, this is a contradiction to (42).

Remark. Part (a) shows that one cannot expect inequalities of type (28)
and (37) if the lattice constant % is too large. But we add here a formula which
gives a better understanding of the lattice character of the above inequalities
if h is sufficiently small. Let (for simplicity) f€ S and

supp FfC Q, ={£ | | & | < b},

Then we have the Fourier expansion (kx = ¥, k;x;)

(Ff)(x) = x(x) ; a exp(— imkx/b),

x{(x) being the characteristic function of @, . Here

c

@y = b—ln be(Ff)(x) explimkx/b) dx = (FYEN)( k) =521 (5 &)
Hence,
1) = 5 X (75 ) 2 exp(—imké/b)(x)
, (43)
.

This shows that the values of £ in the lattice points =k/b determine f(x)
completely.
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4. THE Spaces L,®(x, u)

The spaces L,%(«, p) were defined in (12). A first result for these spaces
was obtained in Theorem 3.6. The main aim of this section is to show that ali
these spaces are quasi-Banach spaces.

4.1. Quasi-Banach Spaces

THeoREM 4.1. (a) All the spaces L,*(«, ) as given by Definition 2.3(b}
are quasi-Banach spaces (for p =1 Banach spaces), provided that h is
sufficiently small (h << hy , where hy has the meaning of Theorem 3.6).

(b) LetpeKla, C)and py , p,e M, , where b < hy. Then
L2(rey y pg) = Ly™(kes . o) (44)

provided that 0 < p < o0, Q2 is a bounded subser of R, , and x/(x) is an
admissible function with respect to p and p; (j = 1, 2).

Proof. (a) Let fe L%k, p) and || Kf,|L = 0. Then fipfll. =0, by
Theorem 3.6, and consequently f(x) = 0 (here pisthe correspondmg function
from Definition 2.3). This proves that L,%(x, p) is a quasi-normed space.
To prove completeness, let {f;};; be a fundamental sequence in L, %(«, u).
Again by Theorem 3.6 it follows that {pf;};-, is a fundamental sequence in L.,
By (4), {exp(—e | x|¥9) f}}7, is a fundamental sequence in L, for each
positive €. Using the argumentation in Lemma 5.1, it follows that {f;}7 is
a fundamental sequence in (S,)’, and hence {Ff;}7., is a fundamental sequence
in (S9Y. Now it is not hard to see that there exists a function f such that

W f — «fille,,—0 and Ff, —— Ff for j— co.

(59)°

In particular, supp FfC Q. Hence, f€ L,%«, p), which proves the com-
pleteness.

(b) Equation (44) is an immediate consequence of Theorem 3.6.

4.2. Density Property

A bounded domain £ in R, has the segment property if there exist open
balls B; and vectors y' e R, , j = 1,..., N, such that

N
UB28L and (@nB)+ 1 CQ

for0 <tr<landj=1,.,N.
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THEOREM 4.2. Let £2 be a bounded domain with segment property. Let
L, 2(x, i) be the space described in Definition 2.3(b). If h is sufficiently small
(h < hy, where hy has the meaning of Theorem 3.6) and if p < o0, then

{f1f€Sa,supp Ff C 2}
is dense in L,%(k, ).

Proof. Let {p;(x)}}; C S, be such that {Fe;(x)}, is a partition of unity
with respect to the balls B, ,

N A
Y Fp(x) =1 for xef2, Fplx)es® (45)
o1

(the remarks in Section 5.3 ensure the existence of such a partition of unity).
By (49) and (62)

@N@ =c| elc—nf)dy,  j=1..N, (46)

is meaningful for feL,*«, p). By a suitable choice of ¢ one has
Zjil (D, f)(x) = f(x), which is a consequence of (45) and an application of
the Fourier transform to (46). We want to show that @, is a bounded
operator in L, %(«, u). By Theorem 4.1 we may assume that p is the Lebesgue
measure and that k = p. Repeating the arguments at the beginning of the
proof to Lemma 3.2 it follows that

00 (@, )00 < sup plor — 2) P2
< csgpp(x—z)—llfgﬁ%!r.

The remark in Section 3.6 shows that @, is a bounded operator in L,?(p, ).
Hence it will be sufficient to approximate @, f. Let, without loss of generality,
@,f = f. If y7 has the above meaning, then f(x) = f(x) e?<¥"-*> belongs to
L,%p, p) provided that 0 < ¢ < 1, and one has (Ffé)(§) = (F)){(¢ — iny).
In particular, supp Ff* C £, the support of Ff* having a positive distance
to the boundary of £. Now ft— fin L,%(p, p) for ¢ | 0. But f* can be
approximated by the method described in the proof of Theorem 3.6, com-
pleting the proof.

5. APPENDIX: ULTRA-DISTRIBUTIONS AND ENTIRE ANALYTIC FUNCTIONS
OF ExPONENTIAL TYPE

Here we present some facts of the theory of ultra-distributions used in this
paper. The main result is an extension of the well-known Paley-Wiener—
Schwartz theorem.
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5.1. The Spaces S, and (S,)

Essentially we shall use the notations by Gelfand and Schilow
{2, Chap. IV]. If | < a << oo, then S, denotes the set of all complex-valued
infinitely differentiable functions ¢(x) defined on the n-dimensional real
Euclidean space R, such that for all multi-indices ~ and all integers k ==
0,1,2,...,

sup | x [F | DUp(x)| < CRAk*. 47)
2eR,, '
Here A and Cj,| are appropriate positive numbers, depending on ¢(x).
If 4 is fixed, then S, 4, denotes the locally convex space whose topology is
generated by the norms

; | x |* Zlai<a | D))
Il @ llz, 446 = sup (4 - é)z, ook

2eRy,
k=0,1,2....

{48)

Here§ > 0and! =0, 1, 2,... . Obviously S, = U 454 So.4 . Now, S, becomes
a locally convex space if it is considered as the inductive limit of S, 4 (a short
description of inductive limits of locally convex spaces and the facts needed
here may be found in [5, ITT, 7]). Let (S,)" and (S,, 4)" be the topological duals
of S, and S, 4, respectively. The definition of the inductive limit yields that
belongs to (S,) if and only if the restriction of f to S, 4 belongs to (S, 4)
for all 4 > 0. The following characterization of S, is of interest: A complex-
valued infinitely differentiable function ¢(x) belongs to S, if and only if there
exist positive numbers B and C® such that for all multi-indices «

| Drp(x)] < C exp(—B | x [/7). (49)
The norms (48) may be replaced by the equivalent norms

Fpllip-s = sup exp(B — 8) | x /%) 3 | Dop(x)l. (50

reER;, fal<I

Here 6 > 0and ! =0, 1, 2,... . A proof may be found in [2], where also the
dependence between A in (48) and B in (50) is given (in [2, IV]. the one-
dimensional case is treated, but the considerations can be extended to the
n-dimensional case; see also [2, IV, Section 9]). The following simple con-
clusion of the last remarks is useful.

LemMa 5.1, Let 1 < a < w and f(x) be a Borel-measurable function in
R, such that for each positive number € there exists a positive number ¢(e) with

[ F()] < ee) exple | x [*/9).

Then f belongs to (S,)" (with the usual interpretation).
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Proaf. The proof follows from (50) and

| [ 709 @ dr | < e sup 1 e 72y exple | 149) | 90 <l -

ER,,

5.2. The Spaces S® and (S®)

If 1 <a < oo, then S* denotes the set of all complex-valued infinitely
differentiable functions ¢(x) defined in R,, such that for all multi-indices «
and all integers £ = 0, 1, 2,...,

sup | x [*| Drp(x)] < G A1 | o jolel, (D
zeR,,

Here 4 and C{® are appropriate positive numbers depending on ¢(x).
We introduce a topology in S® in completely the same manner as in S,:
The space S is the inductive limit of the locally convex spaces S%4 where
the, topology in these spaces is generated by the norms

k X
19— sup XL s [T, -
1=0,1,2....

Here 6 >0 and £ =0,1,2,.... 8% are spaces of Gevrey type, (see
{4, Chap. 7, 1.2]). Let (S%)’ be the topological dual of Se.

5.3. Properties of S, , (S,), S%, and (S%
The definition of S, yields
D(R,) C S4(Ry) CS(R,), (53)

where D = D(R,) is the space of all complex-valued infinitely differentiable
functions in R, with compact support, and S = S(R,) is the usual Schwartz
space of rapidly decreasing functions. If D and S are equipped with the usual
topologies (in particular D(R,) is the inductive limit of D(Ky) = C5(Ky)
where Ky = {x| | x| < N}, N — o0), then (53) also holds in the topological
sense. It is not hard to see that the embeddings in (53) are dense embeddings.
Consequently, by the usual interpretation,

§'C(S,y CD. (54)

Now we collect some properties of the spaces 5S¢ (see [8, 9]; a short description
is also given in [4, Chap. 7, 1.2]). If w, and w, are two bounded (open)
domains such that @, C w, , then there exists a function ¢ € S such that

supp ¢ C w, and p(x) =1 for xew,. (55)
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We may assume @(x) = 0 for x € R, . Further, if @, is covered by a finite
number of open balls, then there exists a corresponding partition of unity
by functions belonging to 5% One may compare the space S* with the space
D, = Dy (R)with M, = [%, considered in [4, Chap. 7, p. 2] (see also [8, 9]).
There holds (in the sense of dense topological embedding)

D, C 8=
Consequently (by the usual interpretation)
(89 C D,

where D, are ultra-distributions of Gevrey type. A constructive description
of the elements of D, is given in {9] and [4, p. 7]. The above remarks on
particular functions in S® show that it is meaningful to define the support of
(8% in the usual way.

5.4. The Fourier Transform

F denotes the usual Fourier transform in the Schwartz space S = S(R,),
its inverse is F~1. Both the spaces S, and S¢ are subspaces of S. Consequently,
the restriction of F and F~! to these spaces is meaningful. One has the fol-
lowing fundamental fact:

ES, =89, FS® = §,. (56}

This means that Fis a one-to-one map from S, onto S* (vesp. from S* onto S,),
continuously in both directions. The same holds for F-1. A proof may be
found in |2, IV, Section 6]. By the usual procedure

FN)(@) = f(Fo).

the Fourier transform and its inverse can be carried over onto (S,) and (59)".
Then
‘ F(S)) = (89, F(S% = (8. {57)

In particular, (54) shows that the Fourier transform may be extended to
more general spaces than S’, the space of tempered distributions.
The following approximation procedure is useful. Let o(x) € D,

?0) >0 [ pde=1 suppeCiylly <1. (s8)

Let @u{x) = h"p(x/h), where h > 0. Then (Fp,X¢) = (Fp)(hf) and
(FerY0) = 1. Using (50) it follows that for e §,

YFo, % for K]0 (59)
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One can extend the last assertion to (S,)'. For our purpose it will be sufficient
to equip (S,)" with the weak topology.

Lemma 5.4. Let fe(S,). Then

Fen) f 5>/ for 210, (60)
supp F((Fepn) f) Csupp £f + {x | [ x | < A} (61)

Proof. Explaining (60) in the usual way:

[(F(Ph) f](‘)b) = f(‘pr(Ph)» ‘l’ € Sa 3
(60) is a consequence of (59). If y €.5%, then

F((Fon) H(x) = f(Fen - Fx)
= Ff(F (Fo,Fy)) = Ff(pn * x)-

Thus (61) follows from supp(e;, * x) C supp x -+ supp ¢z -

5.5. A Theorem of Paley—Wiener—-Schwartz Type

The classical Paley—Wiener—Schwartz theorem gives a characterization of
tempered distributions f with the additional property that the support of the
Fourier transform Ff is compact (cf. [3, Theorem 1.7.7]). We extend this
theorem to distributions belonging to (S,). For brevity we introduce the
following notation: Let 1 << @ << co and b > 0. A complex-valued function
f(x) defined in R, is said to be of type (a, b) if there exists an extension f(z)
of f(x) to the n-dimensional complex space C,, with the following properties:

(i) f(z) is an entire analytic function in C,,
(if) for each positive e there exists a positive number ¢, such that
[f(@)] < ccexple |z V) exp((b + ) | Im z ). (62)

Here |Imz | = (3, | Im z; 1DY2 for z = (z;,..., z,) € C, . In particular,
f(2) is of exponential type.

THEOREM 5.5. The following two assertions are equivalent:

(@ fe(S.) andsupp Ef C{y|[y| < b},
(b) fis of type (a, b) (via the usual interpretation of functions as
distributions).

Proof. Step 1. Let fe(S,) and supp FfC{y||y| <b}. Then g =
Ffe(S%. Let ¢ > 0. We choose a function y(x)eS® with suppxC
{11y <b -+ & such that x(x) =1 for | x| < b + ¢/2 (the remarks in
Section 5.3 ensure the existence of such a function). Then &<*®y(x) e S
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where £ € C,, . Here -, -> denotes the scalar product. First we consider the
function

h(€) = g(x() %)

on C, . Using the norms (52) with an appropriate chocie of 4 it follows that
ME) has first derivatives with respect to the complex variables &, ,..., &, .
Hence A(£) is an entire analytic function in C,, . Furthermore, for all 4 > 0
one has again by (52) that

Yt | D) €4%:0)
WOl < e sup SRS
1=0,1,2,...

(D, indicates the differentiation with respect to x). Let

sup | Dy(x)| < cB™mom  for B! < m.

xER,,
(the dependence of y(x) upon & in (51) is unimportant because y{(x) has a
compact support). Using the last estimates it follows that

FR(E)] < csup 31| & |&-m elollimé] Z | Dfy(x) A~u-at

PERn [Blgm
ml

< cle®iolme] gup
m<]

( 4; )l< it _Zl o )a( B”‘!"f’.”;l(;ni/am)! )“

Without loss of generality we may assume that B is sufficiently large, namely
B =1 and a B-'/* < e. Choosing 4 sufficiently large, namely 4 > 4B,
it follows that

| (&) < cexple | £ V%) exp((b + €) | Tm £ ). (€3)
Now we prove part (a). Let p €S, . Then it follows that

1(9) = g(Fg) = cg (x() | e o(d) dé).

Using (52) and (63), one can prove (by approximating the integral by finite
sums)

@) = e[ hE) o) de.

Therefore, f = ch(¢) by (63) and Lemma 5.1.

Step 2. It will be useful to sharpen the assertion of the first step for the
case fe S, and supp Ff C{y ||y | < b}. One has Ffe S% The extension of
to C, is given by

F(&) = Cj @ O(FF)(x) dx = c‘f (@RS o~ MO (FF)(x) dx.
R, R

n
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We have e~ =mO(Ff)(x) e S»8 where B is independent of ¢. The Fourier
transform maps S*# onto S, » (see [2, IV, Section 6.2]). In particular, (50)
and (52) yield

exp(4 [Re £ V) [ f(O)] < el +[Im £ [Y) exp(b | Im £ |),

where ¢ is independent of £ C,, and A4 and [ are appropriate positive
numbers. It follows that

[ f(O) < c/exp(—A4 | Re £ V%) exp((b + (¢/2)) | Im £ |)
< clexp(—A | €M) exp((b + ) [Im £ |). (64)
This is the counterpart to (63).

Step 3. Let fbe of type (a, b). Lemma 5.1 shows that / belongs to (S,)'.
We must prove the assertion concerning the support of Ff. Let ¢, be the
function of Lemma 5.4, where we additionally assume ¢, € S% The second
step, where F is replaced by F-%, may be applied to Fe;, . Then (64) holds,
with f replaced by Fg;, and b by & Hence it follows for the entire analytic
function f(z)(Fg,)(z) that

| f@Fp)@)l < cexp(—C | z [V exp((b + 1 + 2¢) [ Im z )

Cl
< (1+—!Z|)’ﬁ exp(b + h + 2¢) | Im z ), (65)
where N is an arbitrary positive number. But this is the classical situation
(see [3, 1.7.7]). Consequently,

supp F(fFe) C{y ||y < b+ h}.

Using Lemma 5.4 it follows that supp FfC{y|]jy| < b + k}. Because A
is an arbitrary positive number, one obtains supp Ff C{y ||y | < b}.

Remark. In connection with the last theorem we refer also to
[9, Theorem 21], where a similar result may be found.

5.6. Approximation Property

With the aid of the last theorem one can sharpen Lemma 5.4, Let f be of
type (a, b). Again let ¢; € S° be the functions of Lemma 5 4. For an arbitrary
multi-index vy, ¢ — D is a linear and continuous’ map from S, into S,
and from S® into S¢, and so also from (S,)’ into (S,)’ and from (S“) into (S%)’.
But then the last theorem can be applied to Df and DVquh Using (65) for
these modified functions it.follows that (Fe,)f € S, . Consequently, (60) is an
approximation by entire analytic functions belonging to S, N
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Note added in proof. In connection with ultra-distributions (and in particular with
Theorem 5.5) we also refer to: G. Bidrck, Linear partial differentiai operators and general-
ized distributions, Ark. Mat. 6 (1966), 351-407.
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