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1. INTRODUCTION

This is the second part of a series of papers on general function spaces.
The first part [11] contains a description of abstract decomposition methods.
This part deals with the basic spaces from which the more general spaces,
considered in later papers, are built up: weighted L ll-spaces of analytic
functions, °< p ~ 00. This part is self-contained.

The aim of this paper is the proof of inequalities of Plancherel-Polya­
Nikol'skij type and the consideration of related quasi-Banach spaces. Let
p(x) be a weight function, and let J1-1 and J1-2 be two Borel measures in Rn

with some additional properties explained later on. Then we shall be
concerned with inequalities of type

(I)

and of type

(II)

00 ~ q ~p > 0,

00 ~ q ~ p > 0.

Herejbelongs to a set of entire analytic functions in R n where the supports
of the corresponding Fourier transforms are contained in a fixed compact set
in R n . L ll , ... means the usual quasi-Banach space in Rn with respect to the
measure J1-. For p(x) - 1, dJ1-1 = dJ1-2 = dx = Lebesgue measure and
1 ~ p ~ q ~ 00, one obtains the classical inequalities of Plancherel­
Polya-Nikol'skij type, which playa fundamental role in the theory of function
spaces, namely in the approach given by Nikol'skij [6] (approximation of
functions by entire analytic functions of exponential type). The corre­
sponding Lp-spaces treated in this paper are

{fljE(Sa)', suppFjC Q, II 411L < oo},P,'"
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GENERAL FUNCTION SPACES 155

o < p ~ 00. Here (Sa)' is a space of distributions (lying between Sf and D'),
Ff is the Fourier transform of ,f, and Q is a fixed bounded domain, K is a
weight function, and fL a measure.

We extend the classical inequalities in two directions: first to 0 < p < 1,
and second to weight functions p(x) and measures fL. For the first extension
we need inequalities of maximal type (Hardy's maximal function), for the
second one ultra-distributions. In the Appendix (Section 5) some facts on
ultra-distributions needed are described; in particular a proof of a theorem
of Paley-Wiener-Schwartz type (Theorem 5.5) is given which is perhaps of
interest in itself. Apart from this theorem the main results of the paper are
contained in Theorem 3.5 (resp. 3.6) and Theorem 4.1.

All unimportant positive numbers in this paper are denoted by the same
letters c, c f

, ••••

2. DEFINITIONS

In this section we give the definitions for the weight function p(x), the
measures, and the Lp-spaces mentioned in the Introduction. We shall use
the notations introduced in the Appendix (Section 5) of this paper.

2.1. Weight Functions

R n denotes the n-dimensional real Euclidean space.

DEFINITION 2.1. Let 1 < a < 00, and let {C.}.>o be a set of positive
numbers. Then K(a, C.) denotes the set of all Borel-measurable functions
p(x) in R n such that

o < p(x) ~ C.p(y) exp E I x - y Ilia < 00

for an E > 0, X E Rn , .and y E Rn .

Remarks. (1) Setting y = 0 in (1), it follows by Lemma 5.1 that

p(x) E (SaY.

(1)

(2)

Equation (1) may be simplified. Let

o < p(x) ~ cp(y) exp cf I x - Y Ill, c > 0, c
f > 0, °< fJ < 1.

(3)

If the Borel-measurable function p(x) satisfies (3), then it also satisfies (1),
provided fJ < 11a < 1. On the other hand, choosing E = 1 in (1), one
obtains (3) with fJ = 1ja. But the advantage of the more complicated
condition (1) is the relation (2) which will be useful later on.
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(2) For all E > °it follows immediately from (1) that

c. exp( -E I X II/a) <; p(X) <; c.' exp E Ix II/a, c. > 0, c.' > 0.

(4)

Consequently, the growth of p(x) is restricted from above and from below.
Furthermore, as an easy consequence of (1) one obtains the following
assertion: Let A > 0, PI E K(a, C.), P2 E K(a, C.'). Then

ApI E K(a, C.),

PI + P2 E K(a, max(C., C.')),

lipi E K(a, C.),

(5)

EXAMPLE. If ex ~ °and j = 1,... , n, then

1 + I Xi I'" E K(a, C.) (6)

for all 1 < a < 00 and appropriate c., depending on a. If °<; f3 < 1,
then

I 1/3
e "'" E K(a, C.) (7)

for f3 < l/a < 1 and appropriate C•. Using (5) one can construct a large
variety of functions P oftype (1), for instance frational functions of (6) and (7)
with positive coefficients.

2.2. Measures

Let h > 0, and let

Qkh = {x I x = (Xl'"'' X n), hki <; Xi < h(ki + 1), (j = 1, ... , n)} (8)

be a decomposition of R n where k = (kl , ... , k n ), k j being integers.

DEFINITION 2.2. M h denotes the set of all Borel measures in R n such that

(9)

Remark. The last definition shows that we shall be concerned with
measures having a lattice structure. The following two measures are of special
interest: (i) the modified Lebesgue measure dxjhn , and (ii) atomic measures
jL(Qkh ) = jL({xk}) = 1, where x k is a fixed point in Qkh • The inequalities
proved later on are independent of jL E M h' provided that h is sufficient
small.
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2.3. Admissible Weight Functions and Lp-Spaces

If (L is a Borel measure in R n , then II . IlL has the usual meaning, namely
p,l-'

= (-t - ess sup I j(x)1

for 0 < P < 00,

for p = 00,
(10)

j(x) are complex-valued functoins. F denotes the Fourier transform
{Appendix 5.4).

DEFINITION 2.3. Let p E K(a, C), and let (L E M h .

(a) A Borel-measurable function K(X) is said to be admissible (with
respect to p and (L) if

(i) there exists a positive number c such that 0 ~ K(X) ~ cp(x)
for all x E Rn ,

Oi) there exist a positive number 0, a positive number c', and a
Borel-measurable subset G of R n such that (L(G n Qkh) ~ 0 for all Qkh and

K(X) ~ c'p(x) for x E G, (11)

(b) Let K(X) be an admissible function (with respect to p and (L), let
o < p ~ 00, and let Q be a bounded subset of R n • Then

Remark. Later it will be shown that all the spaces L 1P(K, (L) are quasi­
Banach spaces, provided that h is sufficiently small.

EXAMPLE. The most interesting feature of the last definition is the
possibility to replace p E K(a, C€) by K. Let d{-t = dx(hn be the modified
Lebesgue measure. Using the examples in Section 2.1 it follows that

n

K(X) = n I Xj i(\
J=l

and

f3~O

are admissible functions (where p(x) = n7~1 (l + ! X j I)B] and p(x) =

1 + I X IB, respectively). Of particular interest seems to be the case K(X) =
I X n IB; f3 "> o.
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3. INEQUALITIES

In this section inequalities of types (I) and (II) mentioned in the Intro­
duction are proved. It will be convenient to divide the proof of the general
inequalities into two main steps: First, the inequalities are proved for
Lebesgue measures. Here the lattice structure of the measures does not play
any role (see Section 3.1,3.3). Second, an equivalence theorem will be derived
showing that one may replace the Lebesgue measure by an arbitrary measure
J1' E M h (see Section 3.4). Afterward it is not hard to formulate the general
results (see Sections 3.5 and 3.6). The question whether the assumptions made
are natural ones is discussed in Section 3.7.

3.1. Inequalities of Type (I) for the Lebesgue Measure

To avoid technical difficulties we first prove the inequalities for rapidly
decreasing analytic functions. We use the notations and the results of the
appendix. Let II . IlL = II . IlL if dJ1' = dx is the Lebesgue measure.

11 'P.p.

THEOREM 3.1. Let p E K(a, CE), b > 0, and °< p 0::( q 0::( 00. Then there
exists a positive number C such that for all entire analytic functions J,

one has

supp FfC {y II y I 0::( b},

II pfllLq 0::( C II pfllLp •

(13)

(14)

Proof. Step 1. It follows from (64) and (4) that both sides of (14) are
finite. Let lj; E Sa such that Flj; has compact support and (Flj;)(x) = 1 for
I x I 0::( b. The existence of such a function follows from (56) and the remarks
in Section 5.3. Iffsatisfies (13) it follows thatFf = Ff· Flj;, and consequently

f(x) = c f fey) lj;(x - y) dy. (15)
Rn

Therefore, by (1),

p(x) If(x)! 0::( CE f I f(y)1 I lj;(X - Y)I p(y) eXp(E I x - y Ilia) dy. (16)
Rn

If 1 0::( p < 00, then again using (64) and choosing E sufficiently small,
it follows by Holder's inequality that

II plIIL"" 0::( c II pfllLp •

If °< p < 1, (15) yields

p(x) If(x) [ 0::( c'(sup p(y) If(y)l)l-P f pP(y) If(Y)IP dy.
R"

(17)



GENERAL FUNCTION SPACES 159

Taking the supremum on the left-hand side and using II p!ilL < 00, one
obtains (17) for 0 < p < 1. if)

Step 2. Let 0 < p < q < 00. Then (14) is a consequence of (17) and

II pfllLq ~ II pfllt,pfq il pl!'i~q.

Remark. The case p(x) - 1 reproduces the classical Plancherel-Polya­
Nikol'skij inequalities.

3.2. Inequalities of Maximal Type

For the proof of inequalities of type (II) mentioned in the Introduction.
some preliminaries are needed. Our approach is based upon the technique of
maximal inequalities developed by Fefferman and Stein [1] and Peetre [7].
In particular, some ideas of the proof of the lemma below are taken from
Peetre [7]. As usual, (Mf)(x) denotes Hardy's maximal function,

(Mf)(x) = sup (1/1 B I) f IfCy)1 dy,
B B

where the supremum is taken over all balls B centered at x E R" .

LEMMA 3.2. Let p E K(a, C.), b > 0, and 0 < r < 00. Then there exists a
positive number C such that for all functions of type (13)

sup p(x - z) ! 'ilf(x - z)1 :<: C[CM I pf1r)(x)11/r. (18)
zeR

n
1 + ! Z I,,/r "" ',J

Proof If f is as in the proof of Theorem 3.1, then of/oxl belongs to also
So and its Fourier transform has a compact support. Hence by (15), (64), and
the counterpart to (16),

p(x-z)[ A

8f
(x-z)1 ~cJ p(y)lf(y)lexp(-t..jx-z-yll/a)dy,

oXI Rn

where t.. is an appropriate positive number. Using the estimate

(1 + j x - y 1'*)/(1 + I z In/r) ~ c(l + I x - y - z i
njr ),

it follows that

j(8f/8x1)(x - z)1 ! J j f(y)1
s~p p(x - z) 1 + I z In/T ~ c s~p R

n
p(y) 1 + I x _ y In/1'

X exp(-A' ; x - ::: - Y II/a) dy
(19)

" if(x - w)1
~ c sup p(x - w) 1 + I 'In/1"

nJ ~ II
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,\' being a positive number with,\' < A. Now we use the fact that

I:~,g I Vg(v) I + (tl<l I g(v)lr dvt
r

(20)

is an equivalent quasi-norm in the Banach space C1({v II v I ~ I}) (a proof
of this assertion will be given in the remark below). Let B s be a ball of radius o.
By a homogeneity argument it follows for g E C1(Bs) that fOLv E Bs

I g(v) [ ~ co sup I Vg(w) I + co-n/r (J I g(w)l" d11'tr, (21)
WEBS Ba

where c is independent of o. Now we apply (21) to f(x - w). If one assumes
o~ 1 and takes into consideration that

I u - v! ~ 1, (22)

where C1 and C2 are two positive numbers independent of u E R n and vERn,
then it follows that

p(x - w) If(x - w)1 ~ co sup p(X - W - y) IVf(x - w - y)[
Iyl<a

+ co-n/r (l pr(X - 11' - y) If(x - w - y)[r dyt
r
.

Iyl<s
(23)

The integral is estimated from above by

(1 pr(x - u) If(x - u)lr dutr ~ cO + 111' In/r)[M I pfl r)(x)]1/r.
lul<lwl+1

Putting this estimate in (23), dividing both sides by 1 + Iw !nir and taking
the supremum with respect to w E R n , it follows that

(25)

~ c [(1 Ig(w)l" dwt
r

+ sup I Vg(w)l]
1701<1 1701<1

which follows from the mean value theorem.

1f(x - w)[ I Vf(x - w)[
s~p p(x - w) 1 + I w In/r ~ co s~p p(x - w) 1 + I w [n/r

+ co-n/r(M I pf Ir(x))l/r,: (24)

where c is independent of o. Obviously, one may replace ofIox1 in (19) by VI
Choosing 0 in (24) sufficiently small, then (18) is a consequence of (24) and
(19), where ofIox1 is replaced by Vf

Remark. We used the fact that (20). is an eqqivalent quasi-norm in the
Banach space C1 of all continuously differentiable functions in the closed
unit ball B. We give a proof. Obviously, (20) can be estimated from above by
II g [b(s) . The converse inequality is a consequence of

I g(v) [ ~ c( min Ig(w) I + sup I Vg(11')1)
1701<1 170 1<1
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3.3. Inequalities of Type (II) for the Lebesgue Measure

If IX = (IXl , •.• , IXn ) is a multi-index, IXi being nonnegative integers, then
Do. = ()'o.1/8x~1 ... (3x~" has the usual meaning with! IX i = L:l IXj •

THEOREM 3.3. Let p E K(a, CE), b > 0, 0 < p ~ q ~ co, and let IX =
(exl ,... , IXn ) be a multi-index. Then there exists a positive number C such that
for all functions f as given via (13) there holds

(26)

Proof The case p = q = 00 follows after differentiation of (15) with
respect to x in the same way as in the proof to Theorem 3.1. Let °< p =

q < 00. Choosing °< r < p, then (18) yields

! p(of/oxl)IILp ~ c il(M I pflr)l/r Ill Lp = C II M 1pi'r

By Hardy's maximal inequality (see [10, p. 5]) it follows that

Ii p(of/oxl)LLp ~ cIII pfl r Ilt~r = c:1 pfl:Lp ' (27)

If f satisfies (13), then of/oxl does, too. Consequently, by iteration of the last
estimate, where Xl can be replaced by Xj , (26) follows with °< P = q < co.
Since D"f satisfies (13), too, the general case °< p ~ q ~ co is a conse­
quence of Theorem 3.1.

Remark. If p(x) - land 1 ~ p ~ q ~ co, then (26) is used by
Nikol'skij [6J in connection with the theory of function spaces.

3.4. An Equivalence Theorem

THEOREM 3.4. Let p E K(a, CE), b > 0, 0 < p ~ co, and f.1'1, f.1'2 E Mit .
if Kl(X) is an admissible fimction with respect to p and f.1'1, and if K2(X) is an
admissible fimction with respect to p and f.1'2 (see Definition 2.3(a)), then there
exists a positive number C such that for all functions f of type (13)

(28)

provided that h is sufficiently small (that means °< h :s; ho , where ho depends
only on 11, p, a, b, and CE , but not on f.1'1 , f.1'2 , Kl(X) and K2(X».

Proof Step 1. First we prove inequalities of type (28) for the modified
Lebesgue measure and the atomic measures described in the Remark in
Section 2.2. More precisely, there exist two positive numbers Cl and C2 such
that for all functions f satisfying (13), there holds

clll p(xk)f(xlc):ll p ~ II pfllLp h-n / p :s; c2 :1 p(xk)f(x"')illp ' (29)
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Here x" E Q"h are arbitrary points, and

o <p < 00,

with the usual modification for p = 00. The constants Cl and C2 are inde­
pendent of h and of the choice of x" E Q"h. If x E Q"h, then

I f(x) I ::( j f(x")! + ch sup! Vf(z)l.
ZEQkh

(30)

Restricting h by h ::( 1 and using an inequality of type (22), it follows that

p(x) [f(x)! ::( cp(x") [f(x")1 + ch sup p(z) I Vf(z)j.
Ix-zl<c'

Here c and c' are independent of h. Ifp < 00, then

f pP(x) I f(x)IP dx ::( chn I. pP(x") If(x")IP
R n "

+ ch p f [( sup p(z) I Vf(z)!)(x)IP dx, (31)
Rn IX-Zl~C~

where c and c' are independent of h. Let 0 < r < p. Using (18) it follows
that the second term on the right-hand side can be estimated by

ch p f I M I pflT(x) IPIT dx.
R..

(32)

(33)

Again using Hardy's maximal inequality, the last term can be estimated
from above by ch p II pf!II . If h is sufficiently small, h ::( ho ::( 1, then

"one obtains the right-hand side of (29). A small modification shows that the
assertion is also true for p = 00 (instead of (18) one has to use (26) for
p = q = 00 and ojoXj). The left hand side of (29) is proved in the same way
by changing the roles of x and x" in (30).

Step 2. Let 0 < h ::( ho and /lol, /lo2 E M h • To prove (28) for Kl =
K 2 = p, let f be a function satisfying (13). Since Cl and C2 in (29) are inde­
pendent of the choice of x" E Q"h, it follows for p < 00 that

f pP(x) I f(x)! Pd/lol ::( hn I. SUPh pP(z) I f(z)[ P
R n " ZEQk

::( chn I inf pP(Z) I f(z)IP
k ZEQ"k;h

A corresponding estimate holds for p = 00.
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Step 3. Let fL E M", where h ~ ho , and let K(X) be an admissible
function with respect to p and fL. We shall show

(34)

If G has the meaning of Definition 2.3(a) (with respect to fh), then we
construct a new measure v EM" by

v(Q) = I (fh(Q n G n Q//)/fL(G n Qkh
)),

k

(35)

where Q is an arbitrary Borel-measurable set in R n . If 0 has the meaning of
Definition 2.3(a) (with respect to fL), then it follows from (33) (with fLl = IL

and fL2 = v) that for p < 00

I pP(X) [f(x)[P dfL ~ c/o I pP(X) XGP(X) I f(x)[P d,u, (36)
Rn Rn

where XG(x) is the characteristic function of G. Equation (34) follows from
(36) and the fact that p(x) XG(x) ~ CK(X). A corresponding assertion holds
for p = 00. Now, (28) is an easy consequence of (33) and (34).

Remark. Equation (28) and its special case (29) show that the inequalities
proved here have a lattice structure. The question arises how to understand
the restriction h ~ ho of the lattice constant. In Section 3.7, it will be proved
that (29) cannot be true if h is too large.

3.5. The Main Inequality

THEOREM 3.5. Let p E K(a, C.), b > 0, 0 < p ~ q ~ 00, and let fLl'

fL2 E Mil. where 0 < h ~ ho (here ho has the same meaning as in Theorem 3.4).
Furthermore, let KJCX) be an admissible function with respect to p and fL;,
j = 1,2 (cf Definition 2.3(a)). If ex is a multi-index, then there exists a positive
number C such that for all fimctions f of type (13)

II K1DYI[L ~ CII KdlL . (37)
Q.lLl P,f..L 2

Proof Iff satisfies (13), then D'i has the same properties. But now (37)
is a consequence of (26) and (28).

EXAMPLE. By (37) it is possible to compare the Lebesgue-measure with
the atomic measures as described in the Remark in Section 2.2. Other
interesting examples may be obtained on the basis of the examples m
Section 2.3. One has

II fI I Xj IS; D~fll < II fI (l + I x; I)s; D'ill < ell fI I x, IS, fll '
J=l ·Lq J=l La )=1 L"
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where 0 < p ~ q ~ 00 and f3j ?: 0; and

where 0 < p ~ q ~ 00 and f3 ?: O. Here II 'IIL are the usual spaces with
11

respect to the Lebesgue measure.

3.6. Extension of Inequality (37)

For the later applications we extend (37).

THEOREM 3.6. If p, p, q, f1'1' f1'2' Kl' K2 , and ex have the same meaning
as in Theorem 3.5, and if Q is a bounded subset of R n , then there exists a
positive number C such that (37) holds for all fE L,/J(K2 , f1'2) provided that
the lattice constant h is sufficiently small (that means h ~ ho where ho depends
on Q).

Proof LetfE L pf./(K2 , f1'2)' By Lemma 5.4 and Section 5.6 it follows thatf
can be approximated in (SaY by f8 E Sa such that supp Ff8 C {y I Iy I ~ b},
where b is sufficiently large. Apply (37) to f8' If ex = (0, ... , 0), then one
obtains the desired inequality for 0 ~ 0 (here one uses the explicit form off8 as
described in (60), after appropriate changes of notations). The general case
follows by mathematical induction with respect to I ex I.

Remark. We extend another inequality which will be useful for later
applications. For all functions f, satisfying (13), it follows by (18), (24), and
Hardy's maximal inequality that

II
If(x-z)111

s~p p(x - z) 1 + I z In/r I
L11
~ C II pfllLp ,

where 0 < r < p < 00. Using the above approximation argument (and
Fatou's lemma), it follows that the last inequality holds true forf E Lpf./(p, f1'L),

f1'L indicating the Lebesgue measure.

3.7. Noninequalities

The above inequalities have two characteristic features: (i) the lattice
structure, which means the arbitrariness of the measures f1' E M h in the
inequalities (28) and (37), and (ii) the growth conditions for p E K(a, C.),
expressed by (4). In part (a) of the theorem below and in the remark below
we clarify the lattice structure. Parts (b) and (c) of the theorem below show
that one cannot weaken essentially the growth condition (4) in the theory
developed above.
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THEOREM 3.7. (a) Let p E K(a, C.), b > 0, and °< p 0:( 00. If h >
77n1/ 2/b, then there does not exist a positive number C such that for all choices
Xl' E Qlch and allf, satisfying (13), one has

II pfilLpo:( C II p(xk) f(xk)lll p • (38)

(b) Iff E (Sa)' such that supp Ff is compact and

II e·IX~(x)liLro 0:( 00

for an appropriate positive number E, then f(x) 0.

(c) Let E > 0, °< p < 00, and°< a < 1. Then there does not exist
a positive number C such that for all f E S (Schwartz space) with supp Ff C
{y I Iy I 0:( E} one has

(39)

Proof (a) Let 0 < b' < bJn1/ 2 such that h > 77/b', and use the known
formula

(40)

where X' is the characteristicfunction of Q' = {~ I ~ = (~l ,... , ~ ,,), I ~j I 0:( b'}.
If ep E Sa, then

"
f(x) = ep(x) f1 «sin b'xj)jxJ) E Sa'

J~l

The remarks in Section 5.3 show that ep can be chosen such that ep(x) :;:: 0 and

suppFfC {1] I 11]1 0:( 8}.

If 0 > 0 is sufficiently small, then it follows that

(41)

supp Ff = supp (Fep *F fI Sin;'xj) C Q' + {y I I y I 0:( 8} C {y ! I y ! 0:( b;,
J~l J

Consequently, f satisfies (13). Since h > 77(b', one may choose for xl< E Ql"h

a subset of the roots (77(b')(ll ,... , In)' of f, where Ij = ±l, ±2, ±3,....
Hence, for such a choice of x k the right-hand side of (38) vanishes. This
proves (a).

(b) Iff has the described properties, then

(Ff)W = c f e-i<{,x> f(x) d.y
R n
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can be extended to complex " for instance to real, '1 ,...,'n-l and complex 'n
with I1m 'n I < E. Hence, Ffis' an analytic function in the strip I1m 'n I < E.

Since Ffhas compact support in R n , it follows that Ff - 0, and thusf = O.

(c) Assume that there exists a constant C such that (39) is true for all
fES with suppFfC{yllY[ :(E}. LetfES', suppFfC{yIIY[ :(EJ2}.
Using the approximation argument of Lemma 5.4 with respect to Sand S'
it follows that (39) holds also for f (with the same constant C). In particular,
(39) is true for arbitrary polynomials. Let f(x) = 2:::=1 xr where m is a
positive even number. Let r = I x I. If p < 00, it follows that

m2p foo exp( _pr1 /a) rpm-2p+n-l dr :( c foo exp(_pr1 /a) rpm+n- 1 dr,
o 0

where c is independent of m. Using the transformation pr1fa = t, it follows
that

m2PF(apm - 2ap + an) :( c'T(apm + an), (42)

where T is Euler's T-function. Here c' is independent of m. As a consequence
of Stirling's formula one obtains

T(apm + an) :( cm2apT(apm - 2ap + an).

Because a < 1, this is a contradiction to (42).

Remark. Part (a) shows that one cannot expect inequalities of type (28)
and (37) ifthe lattice constant h is too large. But we add here a formula which
gives a better understanding of the lattice character of the above inequalities
if h is sufficiently small. Let (for simplicity) f E Sand

suppFfC Qb = {t II tj 1:( b},

Then we have the Fourier expansion (kx = 2:::=1 kjXj)

(Ff)(x) = X(x) L ak exp(- hTkxJb),
k

x(x) being the characteristic function of Qb . Here

If . C (TT) C (TT)ak = bn (Ff)(x) exp(mkxjb) dx = bn [F-l(Ff)] b k = bnf b k
Qb

Hence,

f(x) = ~~Lf(; k)F-l(xexp(-iTTkt/b))(x)
k

= ~~ Lf(; k) (F-1x) (x - ; k).
k

(43)

This shows that the values of f in the lattice points TTkjb determine f(x)
completely.
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The spaces L/J(K, j-t) were defined in (12). A first result for these spaces
was obtained in Theorem 3.6. The main aim of this section is to show that all
these spaces are quasi-Banach spaces.

4.1. Quasi-Banach Spaces

THEOREM 4.1. (a) All the spaces L/J(K, j-t) as given by Definition 2.3(b)
are quasi-Banach spaces (for p ~ 1 Banach spaces), prodded that h is
sufficiently small (h :s:; ho , where ho has the meaning of Theorem 3.6).

(b) Let p E K(a, Ce) and j-tl , j-tz E M h , where h :s:; ho • Then

(44)

provided that 0 < p :s:; 00, Q is a bounded subset of Rn , and KJ(X) is an
admissible function with respect to p and j-tj (j = 1,2).

Proof (a) Let fE L/J(K, j-t) and Ii KfilL = O. Then Ii pfiiL = 0, by
P.P 00

Theorem 3.6, and consequently f(x) - 0 (here p is the corresponding function
from Definition 2.3). This proves that L/J(K, fL) is a quasi-normed space.
To prove completeness, let {fi};':l be a fundamental sequence in L/2(K. fL).
Again by Theorem 3.6 it follows that {pfi}'::l is a fundamental sequence in Lx; .
By (4), {exp(-€ I x II/a)'/;}'::l is a fundamental sequence in Lx for each
positive €. Using the argumentation in Lemma 5.1, it follows that {J;};::'l is
a fundamental sequence in (Sa)', and hence {Ffi};::'l is a fundamental sequence
in (sa)'. Now it is not hard to see that there exists a functionfsuch that

and FI" -----+ FI"
JJ (S")' J for j - 00.

In particular, supp Ffe n. Hence, fE L/2(K, j-t), which proves the com­
pleteness.

(b) Equation (44) is an immediate consequence of Theorem 3.6.

4.2. Density Property

A bounded domain Q in Rn has the segment property if there exist open
balls B j and vectors yj E R n , j = 1,... , N, such that

for 0 < t :s:; 1 andj = 1, ..., N.

and (n n BJ -t- tyJ C Q
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THEOREM 4.2. Let Q be a bounded domain with segment property. Let
L/"J(K, {-t) be the space described in Definition 2.3(b). If h is sufficiently small
(h ~ ho , where ho has the meaning of Theorem 3.6) and ifp < 00, then

UlfESa , suppFfC Q}

is dense in L/"J(K, {-t).

Proof Let {epj(X)}~lC Sa be such that {FepJCX)};:l is a partition of unity
with respect to the balls BJ ,

N

L FepJCx) = 1
j~l

for x E tJ, Fepj(x) E sa (45)

(the remarks in Section 5.3 ensure the existence of such a partition of unity).
By (49) and (62)

(tJ>d)(x) = c f epJCx - y)f(y) dy, j = 1'00" N, (46)
R.

is meaningful for fE L/"J(K, {-t). By a suitable choice of c one has
L~l (tJ>d)(x) = f(x), which is a consequence of (45) and an application of
the Fourier transform to (46). We want to show that tJ>j is a bounded
operator in L p Q(K, {-t). By Theorem 4.1 we may assume that {-t is the Lebesgue
measure and that K = p. Repeating the arguments at the beginning of the
proof to Lemma 3.2 it follows that

. 1(tJ>d)(x - z)1
p(x) I(tJ>d)(x) I ~ s~p p(x - z) 1 + [z In/r

If(x - z)[
~ c s~p p(x - z) 1 + I z In/r

The remark in Section 3.6 shows that tJ>j is a bounded operator in LpQ(p, {-t).
Hence it will be sufficient to approximate tJ>,f Let, without loss of generality,
<Pd = f If yj has the above meaning, then ft(x) = f(x) eit<y;.x> belongs to
LpQ(p, {-t) provided that 0 < t ~ 1, and one has (Fji)(g) = (Ff)(g - ilyj).
In particular, supp Fft C Q, the support of Fft having a positive distance
to the boundary of Q. Now ft -- fin LpQ(p, {-t) for t! O. But ft can be
approximated by the method described in the proof of Theorem 3.6, com­
pleting the proof.

5. APPENDIX: ULTRA-DISTRIBp1'IONS AND ENTIRE ANALYTIC FUNCTIONS

OF EXPONENTIAL TYPE

Here we present some facts of the theory of ultra-distributions used in this
paper. The main result is an extension of the well-known Paley-Wiener­
Schwartz theorem.
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5.1. The Spaces Sa and (Sa)'

Essentially we shall use the notations by Gelfand and Schilow
[2, Chap. IV]. If 1 < a < 00, then Sa denotes the set of all complex-valued
infinitely differentiable functions <p(x) defined on the n-dimensional real
Euclidean space Rn such that for all multi-indices ex and all integers k =

0,1,2, ... ,

sup I X [k I D~<p(x)l ::s::: C,';iAkkak.
J:eR n F

(47)

Here A and Cia I are appropriate positive numbers, depending on <p(x).
If A is fixed, then Sa,A denotes the locally convex space whose topology is
generated by the norms

Ii <p 111.A+S = sup
XERn

k=O.1.2 ....

I X Ik :rlal";;l i D~<p(x)1
(A + O)k kak

(48)

Here 0 > 0 and 1= 0, 1,2,.... Obviously Sa = UA>O Sa,A' Now, Sa becomes
a locally convex space ifit is considered as the inductive limit of Sa.A (a short
description of inductive limits of locally convex spaces and the facts needed
here may be found in [5, III, 7]). Let (Sa)' and (Sa,A)' be the topological duals
of Sa and Sa.A, respectively. The definition of the inductive limit yields thatf
belongs to (Sa)' if and only if the restriction of f to Sa.A belongs to (Sa.A)'
for aU A > O. The following characterization of Sa is of interest: A complex­
valued infinitely differentiable function <p(x) belongs to Sa if and only if there
exist positive numbers Band Ci2

) such that for all multi-indices ex

(49)

The norms (48) may be replaced by the equivalent norms

II <p 11;.B-8 = sup exp«B - 0) [ x Ilia) L: [D"'<p(x)l. (50)
xERn 1",[<1

Here 0 > 0 and I = 0, 1, 2,.... A proof may be found in [2J, where also the
dependence between A in (48) and B in (50) is given (in [2, IV]. the one­
dimensional case is treated, but the considerations can be extended to the
n-dimensional case; see also [2, IV, Section 9]). The following simple con­
clusion of the last remarks is useful.

LEMMA 5.1. Let 1 < a < CIJ and I(x) be a Borel-measurable function in
R n such that for each positive number E there exists a positive number c(E) with

Thenf belongs to (Sa)' (with the usual interpretation).
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Proof The proof follows from (50) and

If f(x) tp(X) dx I~ c sup (1 + I x IMI) exp(€ I X II/a) I tp(x) I ~ c' II tp 11~.2€·
Rn XER n

5.2. The Spaces Sa and (sa)'

If 1 < a < 00, then sa denotes the set of all complex-valued infinitely
differentiable functions tp(x) defined in R n such that for all multi-indices ex
and all integers k = 0, 1, 2, ... ,

sup I X I" I D"tp(x)j ~ q3lAI"1 I ex lal"t.
XERn

(51)

Here A and C!,31 are appropriate positive numbers depending on tp(x).
We introduce a topology in Sa in completely the same manner as in Sa:
The space Sa is the inductive limit of the locally convex spaces Sa,A where
the, topology in these spaces is generated by the norms

II tp 11~.A+6 = sup
XER n

I~O,1,2 ....

I X Ik2:1"t<1 j D"tp(x)I
(A + o)l[al

(52)

Here ;) > ° and k = 0, 1,2,.... Sa are spaces of Gevrey type, (see
[4, Chap. 7, 1.2]). Let (sa)' be the topological dual of sa.

5.3. Properties ofSa , (Sa)', sa, and (sa)'

The definition of Sa yields

(53)

where D = D(Rn) is the space of all complex-valued infinitely differentiable
functions in Rn with compact support, and S = S(Rn) is the usual Schwartz
space of rapidly decreasing functions. If D and S are equipped with the usual
topologies (in particular D(Rn ) is the inductive limit of D(KN ) = C;'(KN )

where K N = {x II x I ~ N}, N -+ (0), then (53) also holds in the topological
sense. It is not hard to see that the embeddings in (53) are dense embeddings.
Consequently, by the usual interpretation,

S' C (Sa)' CD'. (54)

Now we collect some properties of the spaces sa (see [8, 9]; a short description
'is also given in [4, Chap. 7, 1.2]). If WI and W2 are two bounded (open)
domains such that w2 C WI , then there exists a function tp E sa such that

and tp(x) = 1 for x E w2 • (55)
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We may assume cp(x) ~ °for x E R n . Further, if (.()2 is covered by a finite
number of open balls, then there exists a corresponding partition of unity
by functions belonging to So. One may compare the space So with the space
Do = DM (Rn) with M 1 = lal, considered in [4, Chap. 7, p. 2] (see also [8, 9]).,
There holds (in the sense of dense topological embedding)

Consequently (by the usual interpretation)

where Do' are ultra-distributions of Gevrey type. A constructive description
of the elements of Do' is given in [9] and [4, p. 7]. The above remarks on
particular functions in sa show that it is meaningful to define the support of
fE (So)' in the usual way.

5.4. The Fourier Transform

F denotes the usual Fourier transform in the Schwartz space S = S(Rn),

its inverse is F-l. Both the spaces So and sa are subspaces of S. Consequently,
the restriction of F and F-l to these spaces is meaningful. One has the fol­
lowing fundamental fact:

(56)

This means thatFis a one-to-one map from Sa onto Sa (resp. from sa onto Sa),
continuously in both directions. The same holds for F-l. A proof may be
found in [2, IV, Section 6]. By the usual procedure

(Ff)(cp) = f(Fcp),

the Fourier transform and its inverse can be carried over onto (Sa)' and (sa)'.
Then

(57)

In particular, (54) shows that the Fourier transform may be extended to
more general spaces than S', the space of tempered distributions.

The following approximation procedure is useful. Let cp(x) ED,

rex) ~ 0, f cp(x)dx=l,
Rn

supp cp C {y I [ )' : ~ 1}. (58)

Let cph(X) = h-ncp(xfh), where h > 0. Then (Fcph)(g) = (Fcp)(hg) and
(Fcph)(O) = 1. Using (50) it follows that for f E Sa

for h t o. (59)
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One can extend the last assertion to (Sa)" For our purpose it will be sufficient
to equip (Sa)' with the weak topology.

LEMMA 5.4. LetfE (Sa)" Then

(Feph)f<i7 f for h! 0,

supp F((Feph) 1) C supp Ff + {x I I x I ~ h}.

Proof Explaining (60) in the usual way:

[(Feph) f](!f;) = f( !f;Feph),

(60) is a consequence of (59). If XE sa, then

F((Feph) f)(x) = f(Feph . FX)

= Ff(F-l(FephFX)) = Ff(eph *X)·

Thus (61) follows from SUPP(eph * X) C supp X + supp eph'

(60)

(61)

5.5. A Theorem of Paley-Wiener-Schwartz Type

The classical Paley-Wiener-Schwartz theorem gives a characterization of
tempered distributions f with the additional property that the support of the
Fourier transform Ff is compact (cf. [3, Theorem 1.7.7]). We extend this
theorem to distributions belonging to (Sa)" For brevity we introduce the
following notation: Let 1 < a < 00 and b > O. A complex-valued function
f(x) defined in Rn is said to be of type (a, b) if there exists an extension fez)
of f(x) to the n-dimensional complex space Cn with the following properties:

(i) fez) is an entire analytic function in Cn ,

(ii) for each positive E there exists a positive number c. such that
1f(z) I ~ c. exp(E I Z II/a) exp((b + E) I 1m z I). (62)

Here I 1m Z I = (~::=l I 1m Zj 12)1/2 for z = (Zl ,... , zn) E Cn • In particular,
fez) is of exponential type.

THEOREM 5.5. The following two assertions are equivalent:

(a) f E (Sa)' and supp FfC {y I I y 1~ b},

(b) f is of type (a, b) (via the usual interpretation of functions as
distributions).

Proof Step 1. Let fE (Sa)' and supp FfC {y II y I ~ b}. Then g =
FfE (sa)'. Let E > O. We choose a function X(x) E sa with supp XC
{y II y I ~ b + E} such that x(x) = 1 for I x I ~ b + E/2 (the remarks in
Section 5.3 ensure the existence of such a function). Then ei<",<>X(x) E sa
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where gE Cn • Here <-, .) denotes the scalar product. First we consider the
function

on Cn • Using the norms (52) with an appropriate chocie of A it follows that
h(D has first derivatives with respect to the complex variables gl ,..., gn .
Hence h(g) is an entire analytic function in Cn . Furthermore, for all A > 0
one has again by (52) that

[hWI ~ c sup
XERn

I~O,I,2,. ..

Llo<!(l [ DxQ(X(x) e,<x,D)1
Al/al

(Dx~ indicates the differentiation with respect to x). Let

sup I DI3X(x) I ~ cBmmam
XERn

for ! f3 i ~ m.

(the dependence of X(x) upon k in (51) is unimportant because X(x) has a
compact support). Using the last estimates it follows that

Ih(g)1 ~ c sup 31I g 11-m e[x[!Imgl I t Dl3x(x): A-l/-al
XERn [13[(m
m<J

::s::: '(b+E)[Img[ sup ( 4B )l( mm(l- m)l-m )a(, I g I(l-m)/a )a
~ c e m(z -;r- fl BU-m)!a(l- m)! .

Without loss of generality we may assume that B is sufficiently large, namely
B ): 1 and a B-I/a ~ E. Choosing A sufficiently large, namely A ): 4B,
it follows that

Ih(g)1 ~ CE exp(E [ g Ilia) exp«b + E) I Jm g I).

Now we prove part (a). Let rp E Sa . Then it follows that

(63)

Using (52) and (63), one can prove (by approximating the integral by finite
sums)

Therefore,! = chW by (63) and Lemma 5.1.

Step 2. It will be useful to sharpen the assertion of the first step for the
casefESa and suppFfC {y II y I ~ b}. One has FfESa. The extension off
to Cn is given by

J(g) = c I ei<x,g)(Ff)(x) dx = c J e'<X.RWe-<X,Img)(Ff)(x) dx,
Rn Rn
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We have e-<x,rm~>(Ff)(x) E sa,B where B is independent of ~. The Fourier
transform maps Sa,B onto Sa,B (see [2, IV, Section 6.2]). In particular, (50)
and (52) yield

exp(A I Re ~ II/a) If(~)1 ~ c(1 + I1m ~ I!) exp(b I1m ~ I),

where c is independent of ~ E Cn , and A and I are appropriate positive
numbers. It follows that

IfWI ~ c/ exp(-A I Re ~ II/a) exp((b + (E/2» I 1m ~ I)

~ c; exp(- A I ~ II/a) exp((b + E) I1m ~ I). (64)

This is the counterpart to (63).

Step 3. Letfbe of type (a, b). Lemma 5.1 shows tHatfbelongs to (Sa)"
We must prove the assertion concerning the support of FI Let eph be the
function of Lemma 5.4, where we additionally assume eph E sa. The second
step, where F is replaced by F-1, may be applied to Feph' Then (64) holds,
with f replaced by Feph and b by h. Hence it follows for the entire analytic
function f(z)(Feph)(Z) that

I f(z)(Feph)(Z) I ~ c exp(-C IZ II/a) exp(b + h + 2E) I 1m z I)

c'
~ (1 + I z I)N exp(b + h + 2E) I 1m z I), (65)

where N is an arbitrary positive number. But this is the classical situation
(see [3, 1.7.7]). Consequently,

supp F(fFeph) C {y I Iy I ~ b h}.

Using Lemma 5.4 it follows that supp FfC {y i Iy I ~ b + h}. Because h
is an arbitrary positive number, one obtains suppFfC {y II y I ~ b}.

Remark. In connection with the last theorem we refer also to
[9, Theorem 21], where a similar result may be found.

5.6. Approximation Property

With the aid of the last theorem one can sharpen Lemma 5.4. Let f be of
type (a, b). Again let eph E sa be the functions of Lemma 5.4. For an arbitrary
multi-index y, lj; ->- DYlj; is a linear and continuous map from Sa into S"
and from sa into sa, and so also from (Sa)' into (Sa)' and 'from (sa)' into (sa)'.
But then the last theorem can be applied to DYfand DYFeph. Using (65) for
these modified functions it follows that (Feph)fE Sa' Consequently, (60) is an
approximation by entire analytic functions belonging to S(j .'
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Note added in proof. In connection with ultra-distributions (and in particular with
Theorem 5.5) we also refer to: G. BJORCK, Linear partial differential operators and general­
ized distributions, Ark. Mat. 6 (1966), 351-407.
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